The
Complete

Reference

The String and | w
Character Functions

724

C++: The Complete Reference

handling functions. The string functions operate on null-terminated arrays of
characters and require the header <cstring>. The character functions use the
header <cctype>. C programs must use the header files string.h and ctype.h.

Because C/C++ has no bounds checking on array operations, it is the programmer's
responsibility to prevent an array overflow. Neglecting to do so may cause your program
to crash.

In C/C++, a printable character is one that can be displayed on a terminal. These are
usually the characters between a space (0x20) and tilde (OXFE). Control characters have
values between (0) and (0x1F) as well as DEL (0x7F).

For historical reasons, the parameters to the character functions are integers, but
only the low-order byt used; the character functions automatically convert their
arguments to unsigned char. However, you are free to call these functions with
character arguments because characters are automatically elevated to integers at
the time of the call.

The header <cstring> defines the size_t type, which is essentially the same as
unsigned.

This chapter describes only those functions that operate on characters of type char.
These are the functions originally defined by Standard C and C++, and they are by far
the most widely used and supported. Wide-character functions that operate on characters
of type wchar_t are discussed in Chapter 31.

The standard function library has a rich and varied set of string and character

isalnum

#include <cctype>
int isalnum(int ch);

The isalnum() function returns nonzero if its argument is either a letter of the
alphabet or a digit. If the character is not alphanumeric, zero is returned.

Related functions are isalpha(), iscntrl(), isdigit(), isgraph(), isprint(), ispunct(),
and isspace().

isalpha

#include <cctype>
int isalpha(int ch);

The isalpha() function returns nonzero if c/1 is a letter of the alphabet; otherwise
zero is returned. What constitutes a letter of the alphabet may vary from language to
language. For English, these are the upper- and lowercase letters A through Z.

Chapter 26: The String and Character Functions

Related functions are isalnum(), iscntrl(), isdigit(), isgraph(), isprint(), ispunct(),
and isspace().

iscntrl

#include <cctype>

int iscntri(int ch);

The isentrl() function returns nonzero if ¢/ is between zero and 0x1F or is equal to
0x7F (DEL); otherwise zero is returned.

Related functions are isalnum(), isalpha(), isdigit(), isgraph(), isprint(), ispunct(),
and isspace().

isdigit

#include <cctype>
int isdigic(int ch);

The isdigit() function returns nonzero if ci is a digit, that is, 0 through 9. Otherwise

zero is returned.
Related functions are isalnum(), isalpha(), isentrl(), isgraph(), isprint(), ispunct(),

and isspace().
isgraph

#inciude <cctype>
int isgraph(int ch);

The isgraph() function returns nonzero if ci is any printable character other than
a space; otherwise zero is returned. These are characters generally in the range 0x21

through Ox7E.
Related functions are isalnum(), isalpha(), isentrl(), isdigit(), isprint(), ispunct(),

and isspace().
islower

#include <cctype>
int islower (int ch);

725

726 C++: The Complete Reference

The islower() function returns nonzero if ch is a lowercase letter; otherwise zero
is returned.
Arelated function is isupper().

isprint

#include <cctype>
int isprint(int ch);

The isprint() function returns nonzero if ¢/t is a printable character, including
a space; otherwise zero is returned. Printable characters are often in the range 0x20
through Ox7E.

Related functions are isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), ispunct(),
and isspace().

ispunct

#include <cctype>
int ispunct(int ch);

The ispunct() function returns nonzero if ¢/ is a punctuation character; otherwise
zero is returned. The term "punctuation,” as defined by this function, includes all
printing characters that are neither alphanumeric nor a space.

Related functions are isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), and
isspace().

isspace

#include <cctype>
int isspace(int ch);

The isspace() function returns nonzero if ch is either a space, horizontal tab, vertical
tab, formfeed, carriage return, or newline character; otherwise zero is returned.

Related functions are isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), and
ispunct().

Chapter 26: The String and Character Functions

isupper

#include <cctype>
int isupper (int ch);

The isupper() function returns nonzero if ch is an uppercase letter; otherwise zero
is returned.
A related function is islower().

isxdigit

#include <cctype>
int isxdigit{int ch);

The isxdigit() function returns nonzero if ch is a hexadecimal digit; otherwise zero
is returned. A hexadecimal digit will be in one of these ranges: A-F, a—f, or 0-9.

Related functions are isalnum(), isalpha(), iscntrl(), isdigit(), isgraph(), ispunct(),
and isspace().

memchr

#include <cstring>
void *memchr (const void *buffer, int ch, size_t count);

The memchr() function searches the array pointed to by buffer for the first
occurrence of ¢/ in the first count characters.

The memchr() function returns a pointer to the first occurrence of ci in buffer, or it
returns a null pointer if ¢/ is not found.

Related functions are memcpy() and isspace().

memcmp

#include <cstring>
int memcmp (const void *bufl, const void *buf2, size_t count);

727

728 C++: The Complete Reference

The memcemp() function compares the first count characters of the arrays pointed to
by bufl and buf2.
The mememp() function returns an integer that is interpreted as indicated here:

Value Meaning

Less than zero bufl is less than buf2.
Zero bufl is equal to buf2.
Greater than zero bufl is greater than buf2.

Related functions are memchr(), memcpy(), and stremp().
memcpy

#include <cstring>
void *memcpy(void *to, const void *from, size_t count);

The memcpy() function copies count characters from the array pointed to by
from into the array pointed to by fo. If the arrays overlap, the behavior of memcopy()
is undefined.

The memcpy() function returns a pointer to fo.

A related function is memmove().

memmove

#include <cstring>
void *memmove (void *to, const void *from, size_t count);

The memmove() function copies count characters from the array pointed to by from
into the array pointed to by fo. If the arrays overlap, the copy will take place correctly,
placing the correct contents into to but leaving from modified.

The memmove() function returns a pointer to to.

A related function is memcpy().

Chapter 26: The String and Character Functions

memset

#include <cstring>

void *memset (void *buf, int ch, size_t count);

The memset() function copies the low-order byte of ch into the first count characters
of the array pointed to by buf. It returns buf.

The most common use of memset() is to initialize a region of memory to some
known value.

Related functions are mememp(), memcpy(), and memmove().
strcat

#include <cstring>
char *strcat{(char *strl, const char *str2);

The strcat() function concatenates a copy of str2 to strl and terminates str1 with a
null. The null terminator originally ending str1 is overwritten by the first character of
str2. The string str2 is untouched by the operation. If the arrays overlap, the behavior
of strcat() is undefined.

The strcat() function returns str1.

Remember, no bounds checking takes place, so it is the programmer’s responsibility
to ensure that str1 is large enough to hold both its original contents and also those of str2.

Related functions are strchr(), stremp(), and strcpy().

strchr

#include <cstring>
char *strchr(const char *str, int ch);

The strchr() function returns a pointer to the first occurrence of the low-order byte
of cl in the string pointed to by str. If no match is found, a null pointer is returned.
Related functions are strpbrk(), strspn(), strstr(), and strtok().

729

730 C++: The Complete Reference

strcmp

#include <cstring>
int strcmp(const char *strl, const char *str2);

The stremp() function lexicographically compares two strings and returns an
integer based on the outcome as shown here:

Value Meaning

Less than zero strl is less than str2.
Zero strl is equal to str2.
Greater than zero strl is greater than str2.

Related functions are strchr(), strcpy(), and stremp().
strcoll

#include <cstring>
int strcoll(const char *strl, const char *str2);

The strcoll() function compares the string pointed to by str1 with the one pointed
to by str2. The comparison is performed in accordance to the locale specified using the
setlocale() function (see setlocale for details).

The streoll() function returns an integer that is interpreted as indicated here:

Value Meaning

Less than zero strl is less than str2.
Zero strl is equal to sfr2.
Greater than zero strl is greater than str2.

Related functions are memcmp() and stremp().

Chapter 26: The String and Character Functions

strcpy

#include <cstring>
char *strcpy({char *strl, const char *str2);

The strepy() function copies the contents of str2 into str1. str2 must be a pointer to
a null-terminated string. The strepy() function returns a pointer to str1.

If str1 and str2 overlap, the behavior of strepy() is undefined.

Related functions are memcpy(), strchr(), stremp(), and strnemp().

strcspn

#include <cstring>
size_t strcspn{const char *strl, const char *str2);

The strespn() function returns the length of the initial substring of the string pointed
to by str1 that is made up of only those characters not contained in the string pointed to
by str2. Stated differently, strespn() returns the index of the first character in the string
pointed to by str1 that matches any of the characters in the string pointed to by str2.

Related functions are strrchr(), strpbrk(), strstr(), and strtok().

strerroyr

#include <cstring>
char *strervror(int errnum);

The strerror() function returns a pointer to an implementation-defined string
associated with the value of errium. Under no circumstances should you modify

the string.
strien

#include <cstring>
size t strlenf{const char *str);

The strlen() function returns the length of the null-terminated string pointed to
by str. The null terminator is not counted.

731

732 C++: The Complete Reference

Related functions are memcpy(), strchr(), strcmp(), and strnemp().
strncat

#include <cstring>
char *strncat(char *strl, const char *str2, size_t count);

The strncat() function concatenates not more than count characters of the string
pointed to by str2 to the string pointed to by str1 and terminates str1 with a null. The
null terminator originally ending str1 is overwritten by the first character of str2.
The string str2 is untouched by the operation. If the strings overlap, the behavior
is undefined.

The strncat() function returns str1.

Remember that no bounds checking takes place, so it is the programmer's
responsibility to ensure that str1 is large enough to hold both its original contents
and also those of str2.

Related functions are strcat(), strnchr(), strnemp(), and strnepy().

strncmp

#include <cstring>»
int strncmp(const char *strl, conrst char *str2, size_t count);

The strnemp() function lexicographically compares not more than count characters
from the two null-terminated strings and returns an integer based on the outcome, as

shown here:
Value Meaning
Less than zero strl is less than str2.
Zero strl is equal to str2.
Greater than zero strl is greater than str2.

If there are less than count characters in either string, the comparison ends when the
first null is encountered.
Related functions are stremp(), strnchr(), and strncpy().

Chapter 26: The String and Character Functions

strncpy

#include <cstring>
char *strncpy(char *strl, const char *strz, size_t count);

The strnepy() function copies up to couitt characters from the string pointed to by
str2 into the string pointed to by strl. str2 must be a pointer to a null-terminated string.

If str1 and str2 overlap, the behavior of strncpy() is undefined.

If the string pointed to by str2 has less than count characters, nulls will be appended
to the end of str1 until count characters have been copied.

Alternatively, if the string pointed to by str2 is longer than count characters, the
resultant string pointed to by str1 will not be null terminated.

The strncpy() function returns a pointer to strl.

Related functions are memcpy(), strchr(), strncat(), and strnemp().

strpbrk

#include <cstring>
char *strpbrk{const char *strl, const char *str?);

The strpbrk() function returns a pointer to the first character in the string pointed
to by str1 that matches any character in the string pointed to by str2. The null terminators
are not included. If there are no matches, a null pointer is returned.

Related functions are strspn(), strrchr(), strstr(), and strtok().

strrchr

#include <cstring>
char *strrchr(const char *str, int chj;

The strrchr() function returns a pointer to the last occurrence of the low-order byte
of ¢l in the string pointed to by str. If no match is found, a null pointer is returned.
Related functions are strpbrk(), strspn(), strstr(), and strtok().

733

734 C++: The Complete Reference

strspn

#include <cstring>
size_t strspn(const char *strl, ccnst char *str2);

The strspn() function returns the length of the initial substring of the string pointed
to by str1 that is made up of only those characters contained in the string pointed to
by str2. Stated differently, strspn() returns the index of the first character in the string
pointed to by str1 that does not match any of the characters in the string pointed to
by str2.

Related functions are strpbrk(), strrchr(), strstr(), and strtok().

strstr

#include <cstring>

char *strstr(const char *strl, const char *str2):;

The strstr() function returns a poirver to the first occurrence in the string pointed
to by str1 of the string pointed to by str2. It returns a null pointer if no match is found.
Related functions are strchr(), strespn(), strpbrk(), strspn(), strtok(), and strrchr().

strtok

#include <cstring>
char *strtok(char *strl, const char *str2);

The strtok() function returns a pointer to the next token in the string pointed to
by strl. The characters making up the string pointed to by st2 are the delimiters that
determine the token. A null pointer is returned when there is no token to return.

To tokenize a string, the first call to strtok() must have str1 point to the string being
tokenized. Subsequent calls must use a null pointer for st+1. In this way, the entire string
can be reduced to its tokens.

It is possible to use a different set of delimiters for each call to strtok().

Related functions are strchr(), strespn(), strpbrk(), strrchr(), and strspn().

Chapter 26: The String and Character Functions

strxfrm

#include <cstring>
size t strxfrm(char *strl, const char *srr2, size_t count);

The strxfrm() function transforms the string pointed to by str2 so that it can be
used by the stremp() function and puts the result into the string pointed to by str1.
After the transformation, the outcome of a stremp() using str1 and a strcoll() using
the original string pointed to by str2 will be the same. Not more than count characters
are written to the array pointed to by strl.

The strxfrm() function returns the length of the transformed string.

A related function is strcoll().

tolower

#include <cctype>
int tolower (int ch);

The tolower() function returns the lowercase equivalent of c/r if ch is a letter;
otherwise ch is returned unchanged.
A related function is toupper().

toupper

s
3

#include <cctype>
int toupper:int ch);

The toupper() function returns the uppercase equivalent of ch if ch is a letter;
otherwise ch is returned unchanged.
A related function is tolower().

735

